Low Impedance ALD HfO2 Partially-Filled-Gap Flexural and Bulk MEMS Resonators Piezoresistively Detected for Distributed Mass Sensing

نویسندگان

  • Mariazel Maqueda Lopez
  • Emanuele Andrea Casu
  • Montserrat Fernandez-Bolanos
چکیده

This paper reports the design and characterization of partially-filled-gap capacitive MEMS resonators for distributed mass sensing applications. By filling the gap with HfO2, the coupling coefficient between electrode-resonator increases by ×6.67 times and the motional resistance decreases by ×12 times in comparison with its counterpart in air. An improvement by a factor of ×5.6 in the Signal-To-Noise Ratio (SNR) for DC bias up to ×2.8 lower is accomplished by performing a piezoresistive detection instead of capacitive detection. Quality factor (Q) of 11,350 and motional resistances (Rm) of 926 Ω have been achieved for Parallel Beam Resonators (PBR) vibrating at 22.231 MHz. For the first time, ALD HfO2 partially-filled-gap MEMS resonators are proven to achieve inertial distributed mass sensitivities of the order of 4.28 kHz/pg for beam-type and 1.8k Hz/pg for disk resonators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capacitively Transduced Micromechanical Resonators with Simultaneous Low Motional Resistance and Q > 70,000

Capacitively transduced micromechanical disk resonators that exhibit simultaneous low motional resistance (< 130 Ω) and high Q (>70,000) at 61 MHz are demonstrated using an improved ALDpartial electrode-to-resonator gap filling technique that reduces the Q-limiting surface losses of previous renditions by adding an alumina pre-coating before ALD of the gap-filling high-k dielectric. This work i...

متن کامل

Micro (and Nano-) Mechanical Signal Processors

With quality factors (Q) often-exceeding 10,000, vibrating micromechanical resonators have emerged as leading candidates for on-chip versions of high-Q resonators used in wireless communications systems. However, as in the case for transistors, extending the frequency of MEMS resonators generally entails scaling of resonator dimensions. Unfortunately, smaller size often coincides with lower-pow...

متن کامل

Nonlinear Modeling and Investigating the Nonlinear Effects on Frequency Response of Silicon Bulk-mode Ring Resonator

This paper presents a nonlinear analytical model for micromechanical silicon ring resonators with bulk-mode vibrations. A distributed element model has been developed to describe the dynamic behavior of the micromechanical ring resonator. This model shows the nonlinear effects in a silicon ring resonator focusing on the effect of large amplitudes around the resonance frequency, material and ele...

متن کامل

Thermally Actuated Low Impedance MEMS Resonators for Mass Sensing Applications

This paper presents high-Q thermally actuated micromechanical resonators suitable for sensory applications under atmospheric pressure. Single crystal silicon resonators with resonance frequencies in the 250 KHz to 1.5MHz range were fabricated using a single-mask fabrication process on SOI substrates. The resonators were operated in a one-port configuration in their in-plane resonance mode with ...

متن کامل

Acoustic Resonance in an Independent-gate Finfet

This paper demonstrates the acoustic resonance of an Independent-Gate (IG) FinFET driven with internal dielectric transduction and sensed by piezoresistive modulation of the drain current through the transistor. An acoustic resonance at 37.1 GHz is obtained with a quality factor of 560, corresponding to an f.Q product of 2.1x10. The demonstrated hybrid NEMS-CMOS technology can provide RF CMOS c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017